Neural control of the velum in larvae of the gastropod, Ilyanassa obsoleta.

نویسندگان

  • Oliver R Braubach
  • Amanda J G Dickinson
  • Carol C E Evans
  • Roger P Croll
چکیده

Larval molluscs commonly use ciliated vela to swim and feed. In this study we used immunohistochemistry to demonstrate innervation of velar cilia and muscles by monoaminergic and peptidergic fibres in the caenogastropod, Ilyanassa obsoleta. Photoelectric recordings from pre-oral cilia on isolated pieces of velum revealed that serotonin increased, whereas catecholamines (dopamine and norepinephrine) decreased beat frequency at concentrations of 10(-6) to 10(-9) mol l(-1). Catecholamines also increased the frequency of momentary, isolated arrests of pre-oral cilia, but failed to suppress beating of the post-oral cilia at these concentrations. The neuropeptides, FMRFamide and Leu-enkephalin, did not affect the frequency of ciliary beating or of isolated ciliary arrests, but did induce numerous muscular contractions, which were accompanied by sustained ciliary arrests. In terms of whole animal behaviour, serotonin caused larvae to concentrate toward the top of a water column and to increase feeding, whereas catecholamines caused larvae to concentrate toward the bottom of a water column and decrease feeding. Monoamine analogues which facilitated or opposed the effects of synthetic transmitters on larval behaviour, further suggested that these transmitters are released endogenously to control velar function. Finally, applications of peptides to whole larvae caused increased frequency of locomotory arrests. Together these findings demonstrate several potential roles for the nervous system in controlling larval behaviour in gastropods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of nitric oxide synthase-like immunoreactivity in the developing nervous system of the snail Ilyanassa obsoleta.

Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger metamorphosis in physiologically competent larvae of this species. Neuropils in...

متن کامل

Selective retention of the fluorescent dye DASPEI in a larval gastropod mollusc after paraformaldehyde fixation.

In the vertebrates, the vital mitochondrial dye DASPEI (2-(4-dimethylaminostyryl)-N-ethylpyridinium iodide) has been used for the rapid visualization of several distinct classes of epidermal cells in vivo and in vitro: epidermal electroreceptors, mechanoreceptors, and chloride cells in teleosts, and mechanoreceptors in amphibians. I used DASPEI in an attempt to locate a different type of sensor...

متن کامل

NADPH-diaphorase activity changes during gangliogenesis and metamorphosis in the gastropod mollusc Ilyanassa obsoleta.

Gaseous nitric oxide (NO) is produced through the action of the enzyme nitric oxide synthase (NOS) and acts as a neurotransmitter (Jacklet and Gruhn, 1994b. Elphick et al., 1995a; Jacklet, 1995) in the nervous systems of adult gastropod molluses. By comparison, little or no information appears to exist about the ontogeny of molluscan NOS-containing neurons. NADPH-diaphorase (NADPHd) has been de...

متن کامل

Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta.

The apical ganglion (AG) of larval caenogastropods, such as Ilyanassa obsoleta, houses a sensory organ, contains five serotonergic neurons, innervates the muscular and ciliary components of the velum, and sends neurites into a neuropil that lies atop the cerebral commissure. During metamorphosis, the AG is lost. This loss had been postulated to occur through some form of programmed cell death (...

متن کامل

Gangliogenesis in the prosobranch gastropod Ilyanassa obsoleta.

We determined that the larval nervous system of Ilyanassa obsoleta contains paired cerebral, pleural, pedal, buccal and intestinal ganglia and unpaired apical, osphradial, and visceral ganglia. We used a modified form of NADPH diaphorase histochemistry to compare the neuroanatomy of precompetent (including specimens 6, 8, and 12 days after hatching), competent, and metamorphosing larvae with po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 209 Pt 23  شماره 

صفحات  -

تاریخ انتشار 2006